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Abstract

We have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving

surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution

Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the

algorithm is solved with the statistical regression method and the least-squares fit method. This new LST

algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from

published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions.

Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST

algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions,

as well as the noise-equivalent temperature difference (NEAT) and calibration accuracy specifications of the

MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in

retrieved surface daytime and nighttime temperatures fall between 0.4-0.5°K over a wide range of surface

temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in

bands 31 and 32 (in the 10-12.5_tm IR spectral window region) are 0.009, and the maximum error in retrieved

LST values falls between 2-3 °K. Several issues related to the day/night LST algorithm (uncertainties in the

day/night registration and in surface emissivity changes caused by dew occurrence, and the cloud cover) have

been investigated. The LST algorithms have been validated with MODIS Airborne Simulator (MAS) dada and

ground-based measurement data in two field campaigns conducted in Railroad Valley playa, NV in 1995 and

1996. The MODIS LST version 1 software has been delivered.



1. INTRODUCTION

Land-surface temperature (LST) is one of the key parameters in the physics of land-surface processes on regional

and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the

atmosphere and the ground [Mannstein, 1987; Sellers et al., 1988]. Therefore it is required for a wide variety of

climatic, hydrological, ecological and biogeochemical studies [Schmugge and Andrr, 1991; Running et ai.,

1994]. In order to understand the Earth system better on the global scale, the Earth Observing System (EOS) will

provide surface kinetic temperatures at specified accuracies of 0.3°K for oceans and I°K for land. The

international Tropical Ocean Global Atmosphere (TOGA) program has specified that sea surface temperature

(SST) should be accurate to 0.3 °K for global numerical models of climate.

During the past decade, significant progress has been made in estimation of land-surface emissivity and

temperature from airborne thermal infrared data. Kahle et al. [1980] developed a technique to estimate the

surface temperature based on an assumed constant emissivity in one channel and previously determined

atmospheric parameters. This temperature was then used to estimate the emissivity in other channels [Kahle,

1986]. Other techniques, such as thermal log residuals and alpha residuals, have been recently developed to

extract emissivity information from multispectral thermal infrared data [Hook et al., 1992].

A variety of split-window methods have been developed to retrieve sea-surface temperature and land-surface

temperature from NOAA AVHRR data. The split-window LST method corrects the atmospheric effects based on

the differential absorption in adjacent infrared bands [Price, 1984; Becker, 1987; Wan and Dozier, 1989; Becker

and Li, 1990; Sobrino et al., 1991; Vital, 1991; Kerr et al., 1992; Ottle and Stoll, 1993; Prata, 1994; Wan and

Dozier, 1996]. A major problem in using split-window LST methods is that we need to know the surface

emissivities in the bands better than 0.01. It seems possible to have such knowledge of the emissivities for

certain types of land covers, such as lake surfaces, snow/ice, dense evergreen canopies, and some soils. For land

covers with variable emissivities, especially in semi arid and arid areas, it is almost impossible to estimate two

band-averaged emissivities to such accuracy. Therefore, it is necessary to develop new algorithms to retrieve

LST without prior knowledge of surface emissivities. In addition, surface emissivity is also needed both to

calculate up-welling thermal infrared radiation, and for environmental monitoring and geological mapping

[Kahle, 1980].



Li and Becker[1993]proposeda methodto estimateboth land-surfaceemissivityand LST usingpairs of

day/nightco-registeredAVHRRimages.Theyuseda temperature-independentspectralindex(TISI)in thermal

infraredbandsand assumedknowledgeof surfaceTIR BRDF (thermalinfraredBidirectionalReflectance

DistributionFunction)andatmosphericprofiles.Suchcombineda priori knowledgeandinformationarenot

readilyavailablein mostsituations.WanandLi [1996]developeda MODISday/nightLST methodthatuses

day/nightpairsof TIRdatain sevenMODISbandsforsimultaneouslyretrievingsurfacetemperaturesandband-

averagedemissivitieswithoutknowingatmospherictemperatureandwatervaporprofilestohighaccuracy.

MODISis anEOSinstrumentthat will serveasthekeystone[Salomonsonet al., 1989]for globalstudiesof

atmosphere[Kingetal., 1992],land[Runningetal., 1994],andoceanprocesses.It scans+_55° fromnadirin 36

bands,withbands1-19andband26in thevisibleandnearinfraredrange,andtheremainingbandsin thethermal

infraredfrom3 to 15_tm.Thespecificationsof MODISbandsareshownin TableI. Figure1showsthetotal

transmissionandtransmissionfunctionscorrespondingto watervapor(H20) bandabsorptionandcontinuum

absorption,uniformlymixedgases(labeledby CO2)andozoneabsorptions.Thesetransmissioncalculations

weredonefor atypicalscenario,usinganupdatedatmosphericradiativetransfermodel,MODTRAN3[Berket

al., 1989],thespecificconditionsaremid-latitudesummer,clear-sky(23-kmvisibility),with totalcolumnwater

vaporof 2.9cmand line-of-sightviewingof 45°. The transmissionfunctionscorrespondingto molecular

scattering,aerosolscatteringandabsorptionarealso shownin this figure. By examiningthe atmospheric

transmissionfunctions,wecanhavesomegeneralideasfor applicationsof theMODISbands.Thosebandsin

transparentatmosphericwindowsaredesignedfor remotesensingof surfaceproperties.Otherbandsaremainly

for atmosphericstudies.The exact locationand bandwidthof MODIS bandsare selectedto meet the

requirementsfromatmospheric,oceanandlandsciences.MODISwill provideimagesof daylightreflectionand

day/nightemissionof theEarth,repeatingglobalcoverageevery1-2days.It uses12bitsfor quantizationin all

bands.ThethermalinfraredbandshaveanIFOV(instantaneousfield-of-view)of approximately1km atnadir.

MODISwill viewcoldspaceandafull-apertureblackbodybeforeandafterviewingtheEarthscenein orderto

achievecalibrationaccuracyof betterthan1%absolutefor thermalinfraredbands.MODISisparticularlyuseful

becauseof its globalcoverage,radiometricresolutionanddynamicranges,andaccuratecalibrationin multiple

thermalinfraredbandsdesignedfor retrievalsof SST,LST and atmosphericproperties.Specifically,all

atmosphericchannelsof MODISwill beusedto retrieveatmospherictemperatureandwatervaporprofiles

[Smithet al., 1985],band26 will detectcirrusclouds,andthermalinfraredbands20,22,23,29, 31-33will

correctfor atmosphericeffectsandretrievesurfaceemissivityandtemperature.Multiplebandsin the mid-



infrared range will provide, for the first time, corrections for solar radiation in daytime LST estimations using

mid-infrared data. Because of its multiple bands in the mid-infrared range and in the 8-14/.tm window, MODIS

provides an unprecedented opportunity to develop a physics-based algorithm to simultaneously retrieve surface

emissivity and temperature. In Section 2, we present the theoretical basis of the new LST algorithm. Section 3

describes numerical methods used in the algorithm. Section 4 gives simulation results of the new LST algorithm

and results from sensitivity and error analysis. In Section 5, we investigate several issues related to the day/night

LST algorithm (uncertainties in day/night registration and in surface emissivity changes caused by dew

occurrence, and the cloud cover). In Section 6, we present validation results of the LST algorithms with MODIS

Airborne Simulator (MAS) dada and ground-based measurement data in two field campaigns conducted in

Railroad Valley playa, NV in 1995 and 1996. Finally, the status of MODIS LST software is described in Section

7.

2. THEORETICAL BASIS OF THE NEW LSTALGORITHM

For land covers with variable and unknown emissivities, there is greatly insufficient mathematically under-

determined information to retrieve surface temperature and band-averaged emissivities from a one-time

measurement of N thermal infrared channels. This is so, even when atmospheric temperature and humidity

profiles are known exactly, there are still N + 1 unknowns (N band emissivities plus surface temperature).

Therefore, we will consider using multi-temporal and multi-channel data.

2.1 A Physics-Based Day�Night LST Model

In clear-sky conditions, the spectral infrared radiance LO_, It) at the top of the atmosphere is composed of surface

thermal emittance, thermal path radiance LaO_, It), path radiance resulting from scattering of solar radiation

LsO_, P-, la0, 00), solar beam and downward solar diffuse radiation and atmospheric thermal radiation reflected by

the surface,

L(_,, [a) = t l(_, , lEt)E(_,, la) B(_., Ts) + LaO_, It) + LsO_ , It, _t0, 00) + t 2(_', ia, I-t0)P-0E00_)fr(_;/-to, 00)

2re 1

+ f J'it'fr(/J.;/.t', _b')[t3(_, , It)LdO_ , -It', 0") + t4(_,, _t)LtO_,-It', O')]d_t'd(_',
00

(1)

where It is cosine of the viewing zenith angle, e(_,, It) is the surface spectral emissivity, BO_,Ts) is the radiance

emitted by a blackbody at surface temperature Ts, EO(_,) is the spectral solar irradiance incident on the top of the



atmosphere(normalto thebeam),go is cosineof thesolarzenithangle,t0 is therelativeazimuthbetweenthe

viewingdirectionandthesolarbeamdirection,fr(g; g', _') is the BRDF function, Ld(_,, - g', (p') is the downward

solar diffuse radiance, Lt(?_,-g', _') is the atmospheric downward thermal radiance, their incident direction is

represented by - g" and _', and ti(), i = 1.... 4 are transmission functions for the corresponding terms.

The wavelength, _,, in eq. (1) is the wavelength center of a narrow wavelength interval because there is no way to

measure the exact monochromatic signal as a continuous function of wavelength by satellite sensors. Equation

(1) is the generalized form used in the 8-14gm thermal infrared range [Wan and Dozier, 1990] into a wider

wavelength range of 3-14gm. It requires complete calculations of the atmospheric radiative transfer to determine

the values of all terms on the right-hand side. After the zenith and azimuth dependent radiance at user-defined

levels from the Earth's surface to the top of the atmosphere (TOA) is provided by accurate atmospheric radiative

transfer simulations, the TOA radiance can be represented by its components in form (1). Its special form has

been used for a long time in many atmospheric radiation models including LOWTRAN [Kneizys et al., 1983],

MODTRAN [Berk et al., 1987], and MOSART models [Cornette et al., 1994]. In the special form,

t3(). , _t) = tl(_. , g) and t4()_, g) = tl()_ , g) are assumed.

In order to retrieve surface emissivity and temperature from eq. (1), we need to use suitable TIR bands.

According to the MODIS band specifications in Table I and the atmospheric transmission in Fig. 1, bands 20, 22,

and 23 are in the transparent atmospheric window in the 3.5-4.2 gm medium wavelength range, bands 29-32 are

in the 8-13 gm atmospheric window range, while band 33 is just on the edge of this atmospheric window. Band

30 is strongly affected by ozone absorption, so using this band does not help to retrieve surface temperature. As

shown in Fig. 1, major absorbers in bands 20, 22, and 23 are CO2, N2, and water vapor. Major absorbers in bands

29, and 31-33 are water vapor and CO2. The transmission corresponding to aerosol scattering and absorption in

these bands is in the range of 0.95-0.98. So using average aerosol distribution in atmospheric radiative transfer is

usually good enough unless volcano eruptions strongly change the aerosol distribution. Since CO2 and 02

mixing ratios are almost constant, their densities are determined by atmospheric pressure and temperature. Water

vapor is the most variable absorber in the Earth's atmosphere. Therefore, if we know atmospheric water vapor

and temperature profiles, we can calculate all atmospheric terms in the above equation to a quite high accuracy,

which is limited mainly by the accuracy of the coefficients of the water vapor continuum and band absorptions.

The MODIS sounding channels can be used to retrieve atmospheric temperature and water vapor profiles [Smith

et al., 1985; Menzel and Purdom, 1994]. But retrieving atmospheric profiles needs the knowledge of surface



emissivityin orderto separatethesurfacecontributionfromthesoundingdata.Therefore,theretrievedprofiles

mightnotbeaccuratein areaswheresurfaceemissivitiesarehighlyvariablesuchasinsemi-aridandaridareas.

Althoughtheabsolutevaluesof theretrievedprofilesarenotaccurate,theshapesof theatmospherictemperature

andwatervaporprofilesmaybereasonablywellobtained.Radiativetransfersimulationsshowthattheradiance

at thetopof theatmosphere,in MODISTIR bands20,22,23,29,31-33,is almostnot affectedby changing

atmospherictemperatureandwatervaporprofilesat levelsabove9kmelevationbecausethe valuesof water

vaporcontentat theselevelsarevery low. If theshapesof temperatureandwatervaporprofilesin the lower

tropospherecanbewell retrievedfromtheMODISsoundingdata,wecanusetwo variablesto describethe

atmosphericvariations.Oneis theamountof shiftin thetemperatureprofileupto 9kmelevation.Anotheris the

scalefactorfor thewatervaporprofilesothatwecandeterminethecolumnwatervaporwith theshapeandthe

scalefactor.Thenweusetheatmospherictemperatureatthesurfacelevel,Ta,astherepresentativevariableof

thetropospherictemperatureprofile.Similarly,wecanusethecolumnwatervapor(cwv)astherepresentative

for thewatervaporprofile. Alternatively,wecanconsiderit asthefirstorderof approximationto describethe

atmosphericconditionbyusingthesetwovariables.

In orderto makepracticaluseof multi-temporalandmulti-channeldata,weneedto simplifyeq.(1) by using

somerealisticassumptionsaboutthesurfaceopticalproperties.Weassume:1)Thesurfaceemissivitychanges

withvegetationcoverageandsurfacemoisturecontent.However,it doesnotsignificantlychangeinseveraldays

unlessrainand/orsnowoccursduringtheshortperiodof time- particularlyfor baresoilsin aridandsemi-arid

environments(forwhichthesurfaceof thegroundisnormallydry) [Kerretal., 1992].2) Therearequitestrong

spectralvariationsin surfacereflectancefor mostterrestrialmaterialsin the 3.5-4.2l.tmwavelengthrange

[SalisburyandD'Aria, 1994],but theirBRDF anisotropicfactor in this wavelengthrangehasvery small

variationsin theorderof 2%[SnyderandWan,1996(b);SnyderandWan,1996(c)].Soit seemsappropriateto

assumethata singleBRDFanisotropicfactorcanbeusedfor thesurface-reflectedsolarbeamin MODISbands

20,22and23 locatedin thiswavelengthrange.Thisanisotropicfactoris definedby theratioof thesurface-

reflectedsolarbeamattheviewdirectionof theMODISsensorto theradiancethatwouldhaveresultedif the

surfacereflectedisotropically(suchasurfaceiscalledLambertiansurface),

7_fr(_; _0, dPO)
= , (2)

r

where r is reflectance of the assumed Lambertian surface. 3) Atmospheric radiative transfer simulations show



thatin clear-skyconditionsthe surface-reflected diffuse solar irradiance term is much smaller than the surface-

reflected solar beam term in the thermal infrared range, and the surface-reflected atmospheric downward thermal

irradiance term is smaller than surface thermal emission. So the Lambertian approximation of the surface

reflection does not introduce significant error in the 3-14 _tm thermal infrared region. Then we can replace the

BRDF function fr(_t, _', _') in eq. (1) with r/rc and link it to the surface emissivity e by r = 1 - e according to

Kirchhoff's law.

It is important to point out that in eq. (1) we separate the surface-reflected solar beam term from its irradiance

term (the integral of the downward solar diffuse radiance) because changing solar zenith angle has different

effects on these two terms. As solar zenith angle increases, the solar beam at the surface level decreases, but the

downward solar diffuse irradiance may increase in some situations. If the solar beam is included in the total solar

irradiance incident on a surface and surface reflectance (also called as hemispherical reflectance or albedo in the

visible and near-infrared range) is defined as the ratio of the total solar radiance reflected from the surface to the

total solar irradiance, the surface reflectance will be dominated by the BRDF of the solar beam and therefore the

reflectance significantly depends on solar zenith angle [Schaaf and Strahler, 1993]. After the solar beam is

separated from the total downward solar irradiance, we can use the BRDF anisotropic factor to calculate the

surface-reflected solar beam and use the surface reflectance to calculate the surface-reflected solar downward

irradiance. In this way, the solar angle and viewing angle dependences in the surface reflectance will be smaller

so that we can assume the surface as a Lambertian surface.

Based on above assumptions, we have developed the following physics-based day/night LST model from eq. (1).

The radiance measured in MODIS band j can be expressed as

L(j) = tl(j)e(j)Bj(Ts) + La(j) + Ls(j) + 1 -E(/) [t2(j) o_I.t0 E0(j) + t3(j) Ed(j) + t4(j) Et(j)],
/t

(3)

where all terms are band-averaged, E(j) is the band emissivity which will be given in eq. (5), similarly for Bj(Ts),

La(j), Ls(j), and E0(j). Ed(j) and Et(j) are the band-averaged solar diffuse irradiance and atmospheric

downward thermal irradiance at surface. And ti(j), i = 1.... 4 are the band effective transmission functions

weighted by the band response function, the corresponding radiance, and irradiance terms. Note that we have

neglected the in-band spectral variation of the surface emissivity in reducing eq. (1) into eq. (3), and have omitted

symbols of view angle and solar angle for most terms in the above equation. On the right-hand side of this

equation, e(j), c_, and Bj(Ts) depend on surface properties and conditions, all other terms depend on atmospheric



watervaporandtemperatureprofiles,solarangleandviewingangle.Thesetermscanbegivenby numerical

simulationsof atmosphericradiativetransfer.ThespectralresponsefunctionsmeasuredfromtheEngineering

Modelof theMODISinstrumenthavebeenusedasweightsincalculationsofbandaveragesof theseterms.

If weusetwomeasurements(dayandnight)in N MODISTIRbands,wehave2N observations.Thenumberof

unknownvariablesareN bandemissivities,daytimesurfacetemperatureTs-day,nighttimesurfacetemperature

Ts_night,fouratmosphericvariables(Taandcwvattwotimes),andtheanisotropicfactorc_,totallingN + 7. The

numberofobservationsmustbeequalto or largerthanthenumberof unknowns,

2N > N + 7 . (4)

So N > 7 . Note that it is necessary to apply independent shapes of atmospheric temperature and water vapor

profiles for daytime and nighttime so that temporal variations and temperature inversion (more often at night)

could be considered in the LST retrieval. For the MODIS LST algorithm, these seven bands are MODIS bands

20, 22, 23, 29, 31-33. According to the experience from the Engineering Model of the MODIS instrument, the

NEAT in band 33 may be reduced from 0.25°K to 0.12°K, and it appears possible to achieve the goal for

absolute calibration accuracy, 0.5-0.75%, for these seven TIR bands. It seems that we can get unique solutions

for the above 14 unknowns using 14 observations. But it is actually not true because: 1) the atmospheric profile

is a continuous function of height and there are only a finite number of MODIS sounding bands so that the

atmospheric temperature and water vapor profiles can be retrieved only at a finite number of levels, 2) there are

always uncertainties in the retrieved atmospheric profiles and even in their shapes, 3) there is always instrument

noise in the measurement data, 4) there are uncertainties in the atmospheric optical properties including water

vapor absorption coefficients which we used in the development of LST algorithms. Therefore all we can do is to

use a best combination of available bands and use an appropriate method to determine the best estimates of the

unknown variables. We also need to use enough a priori knowledge and constraints of the atmosphere and the

surface as "virtual measurements" to make the retrieval problem well posed [Rodgers, 1976]. The advantage of

using daytime data in MODIS bands 20 and 22-23 is that solar radiation can be used as TIR source in the medium

wavelength range so that the day/night LST model is essentially an active method to get the information of

surface reflectance. Combining with the nighttime data in these three bands and day/night data in the other four

MODIS bands makes it possible to simultaneously retrieve surface emissivity and temperature. The advantage of

including four atmospheric variables (Ta and cwv in daytime and nighttime) is that atmospheric variations are

considered in the retrieval procedure so that uncertainties in the initial atmospheric conditions could be reduced



andabetterself-consistentsolutionof the surface emissivity and temperature could be reached.

2.2 Band-Averaged Emissivities of Land-Surface Materials

The band-averaged emissivity is defined as

_,juji.w(_,) E(_,) d_,

_.j,L (5)E(j)

_i.].vq_(Z,)d_.

Xi, L

where W(_.) is the spectral response function of band j, _.j,L and _.j,U are its lower and upper boundaries. By

using MODIS spectral response functions, band-averaged emissivities can be calculated from published spectral

reflectance data of 80 pure terrestrial materials [Salisbury and D'Aria, 1992 and 1994]. This spectral data base

includes igneous, metamorphic, and sedimentary rocks, varnished rock surfaces, lichen-covered sandstone, soil

samples, green foliage, senescent foliage, water, ice, and water surfaces with suspended quartz sediment or oil

slicks. The sample names and numbers are listed in Table II. The calculated band emissivities in MODIS bands

20, 22, 23, 29, 31-33 are shown in Fig. 2. The sample number corresponds to the sample name and the type of

material in Table II. As shown in this figure, there are very strong variations in the band emissivities for rock and

sand samples, and for some soil samples and senescent vegetation foliages. For example, the emissivity of sands

in MODIS band 20 could be as low as 0.55. However, the band emissivities in MODIS bands 31-33 are larger

than 0.8 for all samples in the spectral reflectance database. For water, ice, and green vegetation leaves, there are

small emissivity contrasts among these seven bands and their band emissivities vary in small ranges.

2.3 Atmospheric Radiative Transfer Simulations

The accuracy of atmospheric radiative transfer numerical models depends on numerical methods to solve the

radiative transfer equation and both our knowledge of the atmosphere and its inherent optical properties [Goody

and Yung, 1989]. The many methods available to solve the atmospheric radiative transfer problem have proved

their fundamental theory and mathematically interesting because there are important applications in neutron

diffusion theory, astrophysics, and earth sciences. For example, there are a variety of methods based on two-

stream approximations [Meador and Weaver, 1980; Tanrd et al., 1990], 4-stream approximations [Cuzzi et al.,

1982], and others such as delta-M method [Wiscombe, 1977], adding/doubling method [Wiscombe, 1976],

discrete ordinate method [Stamnes and Conklin, 1984], and Monte Carlo simulation method [Adams and
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Kattawar,1978].We developeda radiativetransfermodel,whichprovidesaccuratematrix solutionsof the

azimuth-dependentscalarradiativetransferequationfor a verticalinhomogeneous,multi-layeratmosphereby

usingthe adding/doublingmethodfor the developmentof algorithmsto estimatecolumnozoneandLST in

clear-skyconditions[Smithetal.,1992;WanandDozier,1989;WanandDozier,1996].Resultsfromthismodel

matchthosefromStamnesandConklin'sdiscrete-ordinates[StamnesandConklin,1984]calculationsto four

decimalplaces.Atmosphericradiativemodelsbasedon the adding/doublingmethodhaveadvantagesin easy

implementationof surfaceinterfaces,suchastheair-waterinterfaceandinterfacesfor specularreflectanceor

BRDFreflectance,andinefficientlygettingsolutionsfor multipleboundaryconditions.

Thecontinuousupdateof theLOWTRANcode[Kneizysetal., 1983;Kneizysetal.,1988]andMODTRANcode

[Berket al., 1987;Berket al., 1989]developedbytheU.S.Air ForceGeophysicsLaboratoryoverthepasttwo

decadesrepresentsa significantprogressin improvingour knowledgeof opticalpropertiesof the earth's

atmosphere.A two-streamapproximationwithmultiplescatteringparameterization[Kneizysetal., 1988;Isaacs

etal., 1987]isusedin theLOWTRANmodel.Thenewversionsof MODTRANcodehavetheoptionto usethe

discreteordinatemethod.

In theTIR range,LOWTRAN7[Kneizyset al., 1988]andMODTRAN[Berket al., 1989]give transmission

functionsof eachmoleculeatawavenumberintervalof 5cm-1 andlcm-1, respectively.TheLOWTRAN7band

modelwas basedon a least squaresfitting to FASCODE[Cloughet al., 1986]calculationsof various

transmittances,butMODTRANisbasedonaseparatebandmodel,deriveddirectlyfromtheHITRAN[Rothman

et al., 1992]database,by-passingFASCODE.The MODTRANbandmodelhasbeenvalidatedagainst

spectrallydegradedFASCODEcalculationsfor both radianceandtransmittance.The agreementis usually

within a few percentRMS and seldomexceeds5% [Wanget al., 1996]. Note that non-monochromatic

transmissionvaluescausea violationof theLambert-Bouguer-Beerlawbecauseof thecomplexityof molecular

bandabsorption.Thisis trueevenfor anarrowwavenumberintervalof 1cm-1. Onesolutionto thisproblemis

to expandradiativetransmissionfunctionscalculatedfromLOWTRANor MODTRANby using"exponential-

sumfitting" [WiscombeandEvans,1977].Followingthistechniquethemonochromaticradiativetransfermodel

[Chandrasekhar,1960]is appliedseparatelyto eachterm in the exponential-sumexpansion,andthe results

summed.After convolutingtheseresultswith the spectralresponsefunction,we can get band-averaged

atmospherictermsineq.(3). A radiativetransfercodeusingthe"exponential-sumfitting" formulationhasbeen

implementedsuccessfullyonworkstationsandmassiveparallelcomputers,andthesimulationresultshavebeen
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usedin the development of a generalized split-window LST algorithm [Wan and Dozier, 1996]. Typically, the

total number of the cross-product terms in the exponential-sum fitting formulation is over 1,000 so it is very

computationally time consuming. The advantage in using the exponential-sum fitting formulation is that we

obtain more accurate results. For example, the resulted three effective transmission functions for the viewing

path in eq. (1) may be different by a few percent (t 3 > t I and t 4 < tl) because of selective, wavelength-

dependent molecular band absorption. This occurs even though these transmission functions are defined for a

same optical path from the target to the top of the atmosphere in the viewing direction of the sensor. The

correlated-k distribution method [Lacis and Oinas, 1991; Fu and Liou, 1992] is an alternative to the exponential-

sum-fitting method. Usually the number of terms used in the correlated k-distribution method is smaller so that it

is computationally efficient and it gives accurate results. The multiple scattering algorithm in the MODTRAN

code is being upgraded to include a "correlated-k" absorption characterization.

As shown in Fig. 1, the atmospheric transmission in the 8-131.tm window, where three MODIS bands are located

for the purpose of remote measurements of surface temperature, strongly depends on water vapor absorption

including band absorption and continuum absorption. A review for measurements of water vapor absorption in

the 8-13 p.m atmospheric window reveals a considerable variation in its magnitude over the past 20 years [Grant,

1990]. The accuracy of water vapor continuum absorption in five of the measurements reviewed is

approximately 10%, adequate experimental measurements are lacking at temperatures below 280 °K. There is no

accepted theory for the continuum absorption. Recent theoretical studies [Ma and Tipping, 1992; Ma and

Tipping, 1994] on water vapor continuum absorption have led to significant progress in understanding the

physical mechanisms and the temperature dependence of the continuum absorption. But it is still premature to

theoretically determine the magnitude and the temperature dependence of the water vapor continuum absorption

coefficients. Thus, modelers must rely on empirical formulations [Robert et al., 1976; Clough et al., 1989] based

on laboratory measurements [Burch and Alt, 1984]. Atmospheric conditions, especially cold temperatures and/or

high humidities, are difficult if not impossible to reproduce in the laboratory. This is particularly true in the vital

area of continuum absorption. Studies at relative humidities over 70% are a persistent problem. This is the

threshold for condensation on hygroscopic dust particles and therefore for fogging of optical elements.

Furthermore, laboratory spectroscopists have almost reached an impasse in the area of line wings and the

continuum that prevents progress in line-by-line modeling [Varanasi, 1988]. In the past several years, the water

vapor absorption has been compared and validated with High-Resolution Interferometer Sounder (HIS) spectral

radiance data involving vertical path measurements from an aircraft, as well as from the ground [Clough et al.,
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1989;Smithet al., 1993],andlong-pathatmospherictransmissionmeasurements[Thrriaultet al., 1994].The

empiricalcontinuumformulationusedin theFASCODEcode[Cloughetal.,1986],aswellasinLOWTRANand

MODTRANcodeshasbeenchangedseveraltimesin thepastdecade.In theLOWTRAN7code[Kneizyset al.,

1988]andearlierversionsof theMODTRANcode[Berket ai., 1987],themagnitudeof thewatervaporself

continuumabsorptioncoefficientin the8.5-131amwindowis smallerby approximately20%comparedto that

usedin theLOWTRAN6code[Kneizyset al., 1983].Clough[1995]madea newcorrectionto thethewater

vaporcontinuumbasedonthemeasurementof thedownwellingradianceatKavieng,NewGuineabyWestwater

et al. [1994],andthemeasurementsby Revercombandcolleaguesat theUniversityof Wisconsin.Thisnew

continuumformulationhasbeenimplementedin version3 of the MODTRANcodein 1994. Becausethe

uncertaintyin thewatervaporcontinuumabsorptioncoefficientsmaybe largerthana fewpercent,it is not

criticalto neglectthesmalldifferencesamongtransmissionfunctionst l, t 3 and t 4 in eq. (1) before the accuracy

of the water vapor continuum absorption coefficients is significantly improved. So we accept the approximations

t 3 = t l and t 4 = t 1 in eq. (1) that are made in the MODTRAN3 code up to its version 1.3 in the time being. The

effect of these approximations should be considered along with uncertainties due to other sources when actual

data are used to retrieve surface emissivity and temperature. Note that even we assumed that in each narrow

spectral interval of 1 cm -1 or 5 cm -1 the transmission functions for the viewing path are equal in eq. (1), the band

effective transmission functions t3(j ) and t4(j) may still be different from t l(j) in eq. (3). Keeping in mind all

the problems raised above for radiative transfer models, in this study we use version 1.3 of the MODTRAN3 code

[Berk et al., 1989] to calculate all atmospheric and solar terms in eq. (3). The discrete ordinate option with eight

streams is used in MODTRAN3 calculations so that the effect of multiple scattering due to background aerosols

is considered in the calculations of the path radiances and the downwelling irradiances.

The path radiance resulting from scattering of the solar radiation in eq. (3), Ls(j), does depend on the relative

azimuth between viewing direction and the solar beam direction. This dependence is determined by the aerosol

loading, its size distribution, type and scattering phase function. The aerosol information and properties are not

readily available in most situations. As shown in Fig. 1, the total aerosol effect on the transmission function in

the thermal infrared range is small in normal clear-sky conditions. Radiative transfer simulations indicate that

the value of Ls is only several hundredths of the direct solar beam value at the surface level, and that the azimuth

dependence in Ls is less than 10%. So it is appropriate to neglect this azimuth dependence and to use the

azimuth-averaged value of Ls in the new LST algorithm.
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2.4 Variations of Atmospheric Conditions

It is important that a practical LST algorithm should accommodate atmospheric variations in a range that is wide

enough to cover all possible real situations. For LST retrieval, we only consider atmospheric variations in clear-

sky conditions. In the thermal infrared range, the most important atmospheric variables are atmospheric water

vapor and atmospheric temperature profiles. Atmospheric absorption and thermal emission occur mainly in the

lower troposphere. We assume that the MODIS product of the atmospheric temperature and water vapor profiles

retrieved from MODIS sounding channel represents the shapes of the profiles well but maybe does not represent

their absolute values because of the difficulties in decoupling the atmosphere-land interaction. Atmospheric

temperature and water vapor at any level will be interpolated from their values retrieved at fixed levels. Given

the shapes of temperature and water vapor profiles, we can use only two variables to describe variations of the

clear-sky atmospheric condition: a shift of the temperature profile below elevation 9km, and a scaling factor for

the water vapor profile. The column water vapor can be determined by the shape and the scaling factor. In order

to build a data base for the atmospheric and solar terms in eq. (3), we will select 24 basic atmospheric profiles

considering different shapes of temperature and water vapor profiles, and the range of air surface temperatures in

different regions and seasons. Some basic atmospheric profiles include temperature inversion layers. Then we

add more variations to each of these basic atmospheric profiles in the following ways: 1) A 5T is added to the

atmospheric temperature profile at all levels between surface and elevation 9km, ST varies from -10 °K to +20 °K

in steps of 2 °K. The modified atmospheric temperature at the surface level, Ta, will be used as representative of

the entire atmospheric temperature profile. 2) The atmospheric water vapor profile at all levels between surface

and elevation 9km is scaled in steps of 10% so that the column water vapor varies from 10% to 120% of the basic

value.

2.5 Variations of the Land-Surface Temperature

In the simulation study of the new LST algorithm, we consider LST variations in a wide range of LST variations.

The daytime surface temperature varies from atmospheric surface temperature Ta-day to Ta-day + 24 °K in steps

of 6 °K, and the nighttime surface temperature varies from Ta_night - 13.5 °K to Ta_night + 4.5 °K in steps of

4.5 °K.
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3. NUMERICAL METHODS USED IN THE NEW LST ALGORITHM

3.1 Look-Up Table Method

In order to save computational time on numerical simulations of atmospheric radiative transfer for calculating the

atmospheric and solar terms in eq. (3), look-up tables will be used in the new LST algorithm. In this way, we

only need to make a complete series of radiative transfer simulations once to build these look-up tables. Because

multi-dimension interpolations are involved in our look-up table method, linear interpolation is most efficient.

This requires smaller intervals (or steps) for these look-up tables. For example, the step for the atmospheric

temperature variation is 2 °K, the step for atmospheric column water vapor is 10% of the average value, the step

for solar zenith angle and viewing zenith angle is 10 ° for angles smaller than 30 ° and 5 ° for larger angles. The

upper limits for solar and viewing zenith angles are 75 ° and 65 °, respectively. Similarly, a look-up table in a step

of 0.1 °K is also built for the band-averaged Planck functions in the temperature range 200-400°K, which is the

maximum dynamic range for the seven MODIS bands used in this LST algorithm. It is required that errors

caused by look-up tables and interpolation methods should be smaller than NEAT. If this resolution scheme is

used to build a look-up table for the three solar terms in eq. (3) for 24 basic atmospheric profiles, the total size of

the look-up table is approximately 60MB. If use of small look-up tables is a higher priority, we can use 3-point

interpolation method so that six zenith angles are enough for viewing and solar angles. However, 3-point

interpolation takes much more computational time than linear interpolation. The sizes of look-up tables for the

other three atmospheric terms (transmission, thermal infrared path radiance, and downward thermal infrared

irradiance) are much smaller.

3.2 Approaches to Solve the Retrieval Problem

We have developed two approaches to solve the LST retrieval problem. The first one uses statistical regression

method, and the second one uses other numerical methods to solve the set of nonlinear eq. (3).

In a linear approximation of eq. (3) in the proximities of reference values of surface temperature and band

emissivities, the left-hand side reduces to the band brightness temperature and the right-hand side reduces to

surface temperature and band emissivities. Combining 14 equations together, the solution for surface

temperature and band emissivities should be a linear combination of the band brightness temperatures, each of

which corresponds to one of the 14 observations. Its mathematical form is
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14

xi = _,, wi, j yj + wi, o , (6)
j=l

where x is a vector of the 14 variables including surface temperatures and band emissivities, yj is the band

brightness temperature for observation j, and wi, j, i = 1..... 14 and j = 1..... 14 are coefficients. And wi, o is the

coefficient for the offset tenn. We can determine these coefficients in two steps. In step 1, we construct a large

set of simulated observation values in wide ranges of atmospheric and surface conditions. In step 2, we make a

statistical regression analysis using the band brightness temperatures associated with these simulated band

radiance values as independent variables and using the given surface band emissivities and temperatures, and

atmospheric parameters as dependent variables. The output of this regression analysis will be the coefficients in

eq. (6). The process of statistical regression analysis takes much computational time. But it needs only to be

done once. The values of xi provided by this approach are the best estimates of these unknown variables in the

statistical sense.

If we have better information on the shapes of the atmospheric temperature and water vapor profiles for the time

which makes it possible to have a clear-sky day/night pairs of MODIS data, we can use other methods to

numerically solve the set of nonlinear eq. (3). We tried the Quasi-Newton method [Dennis and Schnabel, 1993]

and the Least-Squares Fit ()_2 fit) method [Bevington 1969]. As Rodgers [1976] pointed out, retrieval problems

in remote sensing are generally nonlinear. The main sources of the nonlinearity in eq. (3) are: 1) temperature

dependence of the atmospheric transmission, 2) the dependence of transmission on absorber concentration, 3)

temperature dependence of the Planck function, 4) wavelength dependence of the Planck function across a

spectral band, 5) wavelength dependence of the Planck function between spectral bands, and 6) nonlinear

constraints.

The initial values of the 14 unknown variables are given in their constrained ranges based on reasonable guesses

or statistical analysis. The Quasi-Newton method is slightly more computationally efficient. These two methods

give similar results in cases not including noise. It is well known [Bevington, 1969; Dennis and Schnabel, 1983]

that global convergence to right solutions is not guaranteed for nonlinear problems, especially when noise is

included. The _2 fit method is selected in the new LST algorithm because it is more stable in our simulation

studies. We are only interested in real situations where there is noise in remote measured data caused by the

intrinsic instrument sources and actual turbulence and fine structure in the atmosphere.
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A measureof thegoodnessof _2 fit is defined by [Bevington, 1969]

_2 = _ { I_._._[Lj_L(j)]2} (7)
j=l (yj2

where Lj is the scaled band radiance observation value, j = 1, 7 for daytime, j = 8, 14 for nighttime. L(j) is the

scaled band radiance function in eq. (3), which depends on unknowns xi, i = 1, 14. We use the values of band-

averaged Planck functions at a reference temperature, 300 °K, to scale the band radiance in corresponding bands

so that the scaled differential radiance may be comparable. The term oj is the uncertainty in observation value

Lj. In cases without noise, crj is identically equal to 1. However, for cases which include noise NEAT, oj will be

n'i ATneq (J ) (8)
CYj= Lj Tb (j )

based on the following approximation for the band-averaged Planck function

Lj = Cj Tbnj (j ) (9)

where ATne q (j) is the NEAT value in band j, and Tb(j ) is the brightness temperature corresponding to band

radiance Lj. In the temperature range 240-400 °K, regression analysis gives the best fitting values for n j, they are

12.91, 12.25, 11.98, 6.00, 4.70, 4.11, and 3.74 for MODIS bands 20, 22, 23, 29, 31-33. Note that this

approximation is used only in calculation of (_j, which determines the weight in eq. (7). The effect of errors

caused by this approximation on solutions is negligible.

One of the difficulties in the _2 fit processing is that there may be more than one local minimum for _2 within a

reasonable range of values for variable xi, particularly in cases including noise. Therefore the final solution may

depend on their initial values. We use two different ways to make the initialization. In the first way, we use a

dozen sets of initial values that are spread over preassigned ranges all from minimums to maximums to get

different solutions and select the solution associated with the minimum _2 value. In noisy situations, this

selected solution may not be the best one we searched for. An alternative way is to use the estimates provided by

the statistical regression method as the initial values. We use the second way in our LST algorithm. Typically,

the _2 fit method takes 3-4 iterations to reach the final solution.
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4. SENSITIVITY AND ERROR ANALYSIS

Using look-up tables, we can quickly construct 14 band radiance values (seven values for daytime and seven

values for nighttime) at the top of the atmosphere for any given conditions of surface band emissivities and

BRDF anisotropic factor, daytime and nighttime surface temperatures, daytime and nighttime atmospheric

surface temperatures and column water vapor values, solar angle and viewing angle. Then we can use these 14

radiance values as simulated MODIS observations to retrieve the given surface and atmospheric variables. We

can then construct a sensitivity and error analysis, presented in the following sub-sections.

4.1 Errors Due to Look-up Table and Interpolation Methods

In the first numerical simulation experiment, we do not include any noise in the data construction in order to test

the numerical method to solve the nonlinear problem and to evaluate the errors caused by the use of look-up

tables and interpolation methods. We use the temperature and water vapor shapes in the "average" mid-latitude

summer atmospheric profiles (model 2 in MODTRAN) and set the daytime and nighttime atmospheric surface

temperatures at 298.2 °K and 290.2 °K. The column water vapor is set at 2.6cm for both daytime and nighttime

for simplicity. In real applications, we use independent variables for the column water vapor in daytime and

nighttime. We set the anisotropic factor as 1, solar zenith angle at 45 °, viewing angle at nadir for daytime and

nighttime, five different daytime surface temperatures ranging from 298.2°K to 322.2°K, and five different

nighttime surface temperatures ranging from 276.7 °K to 294.7 °K. There are 25 cases of different daytime and

nighttime surface temperatures for each sample of 80 surface materials. The band emissivities of these 80

terrestrial material samples cover the range from 0.55 to almost unity. The standard deviations of errors in

retrieved surface temperatures are 0.27 and 0.21 °K for daytime and nighttime, the standard deviations of errors in

retrieved emissivities are in 0.005-0.008 for bands 1 to 6, and 0.012 for the last band because of the low

transmission of MODIS band 33 in the atmospheric condition. The standard deviations of errors in retrieved

BRDF anisotropic factor, atmospheric temperatures, and column water vapor are 0.08, 0.10-0.15 °K, and 0.06cm,

respectively. These numbers indicate that look-up tables are appropriate and the g 2 fit method works well.

4.2 Sensitivities to the Uncertainties in Atmospheric Profile Shapes

In the second simulation experiment, we set the NEAT values for the seven bands at 0.05, 0.07, 0.07, 0.05, 0.05,

0.05, and 0.12°K, set 0.5% as the systematic calibration error for all bands, and keep all other parameters as in

the first experiment. In our simulation, NEAT is treated as a random noise. We consider four different
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atmosphericconditionsinmid-latitudesummer,oneis the"average"conditionusedinMODTRANcode(model

2), two (labeledby A109and All7) areselectedfrom the satelliteTOVS Initial GuessRetrieval(TIGR)

atmosphericprofiledatabase[Moineet al.,1987],andthefourth(labeledby "average-4K")is thevariantof the

"average"oneby shifting-4°K onthetemperatureprofilebutkeepingitswatervaporprofileunchanged.As

shownin Fig. 3, threeof themhavealmostthesameair temperatureat thesurfacelevel,but theyhavevery

different shapesin the temperatureand water vaporprofiles. The temperaturediscrepancybetweenthe

"average"profileandprofileAI09 maybeaslargeas10°K atelevationsnear2kmandbetween6-10km.The

differenceinwatervaporprofilesin atmosphericconditionsof "average",A109,andA115maybe20%to 50%

or evenlarger. Weestablishedseparatedatabasesof the atmospherictermsin eq.(3) throughatmospheric

radiativetransfersimulationsfor thesedifferentatmosphericconditions.Theseparatedatabaseswill beusedto

calculatethe daytimeandnighttimebandradiancesin the sevenMODISbandsin wide rangesof surface

temperaturefor 80surfacesamples.Thesecalculatedbandradiancesarethenusedassimulatedobservations.

Thecoefficientsin eq.(6) wereobtainedby statisticalregressionanalysisof theobservationssimulatedfor the

"average"atmosphericcondition.We supposethat thereis enoughinformationavailablefor the "average"

atmosphericcondition,but thereis no informationavailableon the shapesof the atmosphericprofile for

atmosphericconditionslikes thosein A109andAll5. In thestatisticalapproach,we apply thesamesetof

regressioncoefficientsto thefoursetsof simulatedobservationsdatafor retrievingsurfacetemperaturesand

emissivities.In the )(2 fit approach, these surface temperatures and band emissivities retrieved by the regression

approach are used as initial values for further iterative processing. The standard deviations of errors in surface

temperatures and band emissivities retrieved by the statistical regression method are given in the first part of

Table III, and those retrieved by using the _2 fit method are given in the second part. Comparing the results from

the statistical approach and )C2 fit approach for the "average" atmospheric condition indicated that the )_2 fit

method gives significant improvements on retrieved surface temperatures and band emissivities. This is because

we know the shapes of the atmospheric temperature and water vapor profiles well enough to select the right set of

the regression coefficient and the right parts from the look-up tables for the atmospheric and solar terms in eq. (3).

But for atmospheric conditions AI09 and A115, we do not have the information for making the right selections.

So the results retrieved from the )_2 fit approach are worse than those from the statistical approach. However, for

the case with the shifted "average" temperature profile, the standard deviations of errors in surface temperatures

retrieved by using the _2 approach is reduced by a factor of 2, and the accuracies of retrieved band emissivities

are improved by almost 50% because the shapes of atmospheric temperature and water vapor profiles in this case
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areassameasthosein the "average"profile. Fromthis experimentwegainedthe followinginsights:the

statisticalmethodis lessaccuratebutisalsolesssensitiveto uncertaintiesin theatmosphericprofileshapes;and

the _2 fit method may be more accurate but is more sensitive to uncertainties in the profile shapes. In the

following part of this paper, we assume that the information of the profile shapes is available so that it is

appropriate to pursue the _2 fit approach.

4.3 Sensitivities to the Three Assumptions of Surface Optical Properties

In the first test, C l, of the third simulation experiment, we set the NEAT values for the 7 bands at 0.05, 0.07, 0.07,

0.05, 0.05, 0.05, and 0.12°K, set 0.5% as the systematic calibration error for all bands, and kept all other

parameters as in the first experiment. The errors in surface temperatures retrieved by the )_2 fit method for a total

of 2,000 different cases are shown in Fig. 4A. The errors in retrieved band emissivities in MODIS bands 31 and

32 are shown in Fig. 4B. The standard deviations of errors in retrieved surface daytime and nighttime

temperatures are in range of 0.4-0.5 °K, and the standard deviations of errors in band-averaged emissivities in

MODIS bands 31 and 32 are 0.009 over a wide range of surface temperatures in the mid-latitude summer

atmospheric condition. We can see the effect of the 0.5% systematic calibration error in Fig. 4A. This forces the

retrieved temperature to shift to the positive direction by approximately 0.2°K. The histograms of errors in

retrieved surface temperatures and emissivities in bands 31 and 32 for a total of 2,000 cases are shown in Fig. 5A

and 5B. We also applied the day/night LST method to "mixed samples" that contain a mixture of two samples of

the 80 terrestrial materials at different surface temperatures. Similar results have been obtained as long as band

emissivities of the mixed sample are calculated from the components with their proportions as weights and its

effective surface temperature is calculated from the total thermal radiation in MODIS band 31. The effective

surface temperature of a mixed sample does depend on band number, but this dependence is very small (about the

instrument noise level) in normal surface conditions. We do not consider forest fires in the LST processing

because the MODIS TIR bands may be easily saturated by subpixel fires at a small size and there is no sufficient

knowledge on the optical properties of fires and smoke for making atmospheric corrections. In test CI of this

experiment, the maximum error in the retrieved LST is 3.2 °K for only one case (for the Indian grass sample at

temperature 322.2°K). Without considering this extreme case, the maximum error in retrieved LST will be

2.2°K. Note that we simulated the surface temperature variation in a very wide range. For each sample, the

surface temperature varies in a range of 24 °K in daytime, and in a range of 18 °K in nighttime. These ranges are

too wide for some land covers in real situations. For example, the temperature of snow cover and ice could not be
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aboveafewdegreesC. Thisisso,evenconsideringthepossibilityof somesmallproportionof otherlandcovers

mixedin thescene,becausethetemperatureof watersurfaceandhealthyvegetationis not likely to bewarmer

thantheair surfacetemperatureby 24°K. Highersolarelevationandsurfacetemperaturein anormalrangeare

favorableconditionsfor landcoverswith low reflectances.In suchsituation,thesolarbeamcanbeeffectively

usedasanactiveTIRsourcefor remotemeasurementsof thesurfacereflectancein themediumwavelengthrange

sothatthebandemissivitiesin MODISbands31and32canbealsoretrievedat anaccuracybetterthan0.01.

Thentheseretrievedemissivitiescanbeusedin thegeneralizedsplit-windowLSTalgorithm[WanandDozier,

1996]to quicklyretrieveLSTof sameareafor aperiodof oneormoreweeksdependingonseasonandweather

conditions.

Nowwecheckwhetherit ispossibleto relaxthethreeassumptionsof surfaceopticalpropertiesmadein section

2.1. Thefirst rowin TableIV givesstandarddeviationsof thesurfacetemperatureandemissivitiesretrievedin

testCI of thisexperiment.In testsC2 andC3, we introducesomevariationsfor thenighttimesurfaceband

emissivitiesto simulateits possiblechangewith surfacemoisturecontent. In testC2, the nighttimeband

emissivitiesincreaseby 0.01andtheyareonly limitedby its maximumvalue1. In testC3, theemissivity

incrementdependsonitsvalue,a lowerbandemissivitycouldincreasemore.Thismaybethecasefor sands,its

emissivityin MODISband20 is0.56,it couldincreaseto 0.604at night. Thestandarddeviationsof errorsin

daytimeandnighttimesurfacetemperatures,andbandemissivitiesretrievedby the )C2 fit method are increased

slightly. Note that the retrieved emissivities are compared to daytime emissivities only. In tests C4 and C5, we

set different BRDF anisotropic factors for the three bands in the mid-infrared range by differences of 5% and

10%. There is no significant change in the retrieved surface temperature and emissivities. In tests C6 and C7, we

use non-Lambertian reflectance for the surface-reflected solar diffuse irradiance and atmospheric downward

irradiance terms. They differ from the reflectance of a Lambertian surface by +20%. The effect of the non-

Lambertian reflectance is also not significant. Comparing the standard deviations in tests C2 through C7 to those

in test CI shows that the maximum difference in standard deviations of errors in retrieved surface temperatures is

0.17 °K and the maximum difference in standard deviations of errors in retrieved band emissivities is 0.005, they

are comparable to or smaller than the effects caused by NEAT and calibration errors of the instrument.

Therefore, we do not need to understand the three assumptions of surface optical properties described in section

2.1 as strict constraints to the new LST algorithm.
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4.4 Sensitivities to NEAT and Calibration Errors

In the fourth simulation experiment, we keep the same atmospheric and surface temperature parameters as the

first experiment, but change NEAT and calibration error values in a series of tests, as shown in Table V. The first

column in the table indicates the test number. Seven NEAT values for seven bands used in the new LST

algorithm are listed in the second column block, and a systematic calibration error for all bands in the third

column. Standard deviations (STs) and maximum errors (ATs) of the retrieved daytime and nighttime surface

temperatures are given in columns 4-7. The standard deviations of errors in retrieved emissivities for MODIS

bands 31 and 32 are given in the last two columns. Comparison between test DI and test D2 indicates that the

effect caused by a systematic calibration error of 0.5% is comparable to the effect of the given NEAT values.

Test D3 indicates that doubling the NEAT values increases the standard deviation of retrieved daytime surface

temperature by approximately 0.2 °K. Comparing tests D4 and D5 to test D2 indicates that errors in retrieved

surface temperatures and band emissivities become larger as the calibration error increases. In order to achieve

the 1 °K requirement for the LST accuracy and to retrieve band emissivities in MODIS bands 31 and 32 at an

accuracy of the 0.01 level, the calibration error should be smaller than 1%. The new LST algorithm requires

small NEAT (large signal-to-noise ratio) and a high consistent calibration accuracy for the seven bands used. The

split-window SST and LST algorithms also need these requirements for MODIS bands 31 and 32. However, the

new LST algorithm needs these requirements over a much wider spectral range.

5. SEVERAL ISSUES RELATED TO DAY/NIGHT ALGORITHM

5.1 Day/night Registration

It is natural to link the MODIS day/night LST algorithm to the apparent thermal inertia (ATI) algorithm of the

Heat Capacity Mapping Mission (HCMM) sensor [NASA, 1980; Short and Stuart, 1982; Price, 1985; Vukovich,

1984; Majumdar and Bhattacharya, 1990]. The HCMM program was the first NASA research effort directed

mainly toward observations on the thermal state of Earth's land surface from an unmanned satellite. The HCMM

spacecraft operated between April 1978 and September 1980. MODIS is a much more advanced instrument than

HCMM in terms of the thermal remote sensing capability except for the spatial resolution, as shown in Table VI.

The nature of the analog telemetry system onboard the satellite results in some variability in the quality of the

HCMM data and the data quality was also influenced by the quality of the receiving station recording [NASA,

1980]. Because there was only one TIR channel on HCMM, it was not possible to make atmospheric and
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emissivitycorrectionsunlessin-situmeasurementsof atmospheric profiles and surface emissivity were available.

The ATI algorithm requires data in the 12-hour day and night coverage for estimate the day/night temperature

difference. So cloud cover was a hindrance to the accomplishment of objectives [Short and Stuart, 1982]. The

MODIS day/night LST algorithm does not require the 12-hour day and night coverage, it can use daytime and

nighttime data collected in several days as long as the surface emissivity does not change significantly.

Therefore, the chance to have a pair of daytime and nighttime data both in clear-sky conditions will be much

large. It does not assume the same atmospheric conditions for daytime and nighttime because separate

atmospheric variables are used for day and night.

The uncertainty in day/night registration of MODIS data may be a major error source for the day/night LST

algorithm. Numerical simulations have been made to evaluate the sensitivity of the day/night LST algorithm to

the uncertainty in day/night registration. We assume that a vegetation component is mixed with another

terrestrial material in the 80-sample database. It is assumed that the daytime proportion of the vegetation

component in a mixed pixel is 0.5 and the nighttime proportion varies from 0.5 to 0.2 for simulating the mis-

registration effect. The daytime canopy temperature of the vegetation component is given three values: the same

surface temperature as for the another component, 4 °K warmer or cooler than the surface temperature of the

another component. Its nighttime temperature is assumed to be equal to the surface temperature of the another

component. The mid-latitude summer atmosphere is used in this simulation study. Note that the same NEAT

values and the systematic calibration error 0.5% used in typical numerical experiments for the day/night LST

algorithm are also used in this sensitivity study. The rms and maximum errors in surface temperatures and band

emissivities retrieved by the _2 fitting day/night LST algorithm are shown in Table VII. The band emissivities of

the mixed pixel are calculated from the band emissivities in the database and the proportions. The average

values of calculated daytime and nighttime band emissivities are used as the target values for retrieval. Results

in Table VII indicate that the day/night LST algorithm still works well as long as the nighttime proportion of the

vegetation component is not smaller than 0.35, differing from the daytime proportion by less than 30%. This

corresponds to a mis-registration 15% or 30%, depending on how the vegetation component distributed in the

mixed pixel.

5.2 The effect of surface emissivity changes caused by dew

Dew is a common global phenomenon. By model calculations and measurements of dew occurrence, Janssen

and Rrmer [1991] showed that there were 220 dewy nights and 1600 dewy hours in the Netherlands in 1987. Six
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yearsof dewobservationsin theNegevDesert,Israel[Zangvil,1996]showthatthetotalmonthlydewhoursis

145hpermonthfromAugusttoJanuary,and80hpermonthfromFebruarytoJuneandthattheaverageduration

of dewperdewnight appearsto follow closelythe lengthof thenight. SchermandBruggen[1993]useda

previouslyverifiedandvalidatedmodelto calculatethefrequencyanddurationof dewoccurrencewithhourly

weatherdataoveragrowingseason(April-October)indifferentclimateregionsof California.Simulationresults

indicatedthathighdewoccurrence(78-93%of thedays)andlongmeandewduration(8.7-9.3perday)atcoastal

stations,andlow occurrence(23%of thedays)andshortduration(0.9h perdayor 3.7h perdewevent)at the

interiorvalleysite. Thedewdurationissensitiveto changesinhumidityandcloudcoverat thecoastalsitesand

to humidityandwind speedat the interiorvalleysite. An empiricalmodelto estimatethe durationof dew

periodsby theuseof dewpointdepression,windspeed,andrelativehumidity(RH)as inputs[Gleasonet al.,

1994],hasanaccuracybetterbyonly5-10%thanasimpleRH> 90%model[Suttonetal., 1984].Thisindicates

thatthenear-surfacerelativehumidityis theprimaryfactorin dewoccurrence.Becausetheweatherdataare

usuallynotavailablein remoteareas,it isnoteasyto calculatedewoccurrencewith thedewmodels.Thenear-

surfacehumidity in the MODIS atmosphericprofile productmay be usedto reject the dew occurrence.

Consideringpotentiallargeerrorsin thetemperatureandwatervaporin thesurfaceboundarylayerin theMODIS

atmosphericprofilesproduct,RH < 50%maybeusedasa conservativeconditionfor nondewhours.Thenwe

onlyneedto detectnightdewin ourLSTalgorithmin relativelywetconditions(RH> 50%).Whendewoccurs

at night the surfaceemissivitymay bechangedsignificantlyif a landcoverhasa low emissivityin dry

conditions,for example,in thedesertenvironment.This significantchangein surfaceemissivityshouldbe

shownin TIRdata. If surfaceemissivityat nightdifferssignificantlyfromthevalueindaytime,themajorlink

betweendayandnightobservationsusedin theday/nightLST methodwill be lost. Soweneedto find some

additionalinformationto helptheLSTretrievalwith onlythemultibandnight-onlyobservation.Theempirical

relationshipbetweenthe minimumemissivity(Emin) and the spectral contrast which is described by the

maximum-minimum difference (MMD) is such an information. This relationship is used in the ASTER TES

algorithm [ATBD-AST-03, 1996]. Based on 80 laboratory reflectance spectra of rocks, soils, vegetation leaves,

snow, ice and water [Salisbury and D'Aria, 1992] and their mixed values with three different portions of

vegetation (totally 320 samples), two empirical relationships between minimum emissivity (Emin) and the spectral

contrast described by MMD (maximum and minimum difference) have been calculated. One is for five MODIS

bands (bands 20, 22, 23, 29 and 31), and another for the seven MODIS bands used in the day/night LST

algorithm, as shown in Fig. 6. These two relationships have been added to our day/night algorithm as an option.
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Wealsomadea seriesof numerical simulations with the enhanced day/night LST algorithm (called MMD-MIN

X2 fitting LST method hereafter) in cases with and without night dew. Seven tests have been made to show the

performance of three options of this enhanced LST algorithm: night-only, day-only, and day/night combination.

In the current simulations we assume that the emissivity of a dew film has the same value of water surface

emissivity. We will measure its spectral emissivity during the course of dew occurrence.

Simulation results with the statistical day/night LST algorithm and the MMD-MIN X2 fitting LST algorithm are

shown in Fig. 7 and Table VIII. We used the similar parameters as used in the third numerical experiment and

assume that each of 80 samples mixed with the vegetation sample (no. 51 in Table II) in a proportion of 25

percent. Note that the spectral reflectance data of vegetation samples (no. 50 to 62) were obtained by

measurements of single leaves. According to our recent measurements and simulations with modified BRDF

kernel models [Snyder and Wan, 1996(a)], the spectral reflectance of a canopy is approximately one third of the

spectral reflectance of a single leaf because of volumetric effects. We have made this adjustment for the

vegetation samples in this numerical experiment in order to get a better understanding of the dew effect. After

this adjustment, the emissivity of all vegetation samples is close to 0.99 so that the emissivity difference between

water and vegetation is negligible. Figure 7 show the error in surface temperature and the emissivity in MODIS

band 20 retrieved by the night-only method. For sample 50 to sample 79, the errors in nighttime surface

temperature retrieved by both the statistical and g2 fitting methods are within the range of _1.5 °K because dew

does not change the surface emissivities of vegetation, water, and ice. But dew has a significant effect on the

emissivities of most rock and soil samples as shown in Fig. 2A. As indicated in Table VIII, test A is for the

surface temperature and emissivities retrieved by the day/night statistical method. Because the dew effect has

not been included in the statistical regression analysis, the rms and maximum errors in nighttime surface

temperatures are 1.7 °K and 6.6 °K, respectively. In test B, only the night observation in seven MODIS bands

was used to retrieve the surface temperature and emissivities by the g 2 fit method. The maximum error in the

retrieved nighttime surface temperature reduces to 5.4 °K if no MMD-MIN relationship is used, and it reduces to

3.4°K and 3.1 °K if one or two MMD-MIN relationships are used. The rms error in retrieved band emissivities is

reduced by a factor of 2-3. Figure 7A shows the error in surface temperatures retrieved by the statistical method

in test A and by the )_2 fitting method in test B. Figure 7B shows the error in surface emissivities in band 20, _20,

retrieved by the the Z2 fitting method in test B. Although errors in the retrieved _20 are still large for some rock

and soil samples, these errors are smaller than the emissivity difference between dew and these samples, which is

shown by open circles in Fig. 7B. This means that g20 retrieved by the night-only method can be used to detect
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dewfor thoselandtypeswhichhavelow £20valuesindryconditions.Thenwecanusethis informationin the

followingprocessing.TestCshowsthesimulationsresultsretrievedbythenight-only7,,2 fitting LST method for

cases without night dew, the accuracies are much better than those in Test B for cases with night dew. Tests D

and E show the results retrieved by the day-only X 2 fitting method for cases with and without dew. The MMD-

MIN relationships improve the retrieval accuracies slightly. The accuracies of retrieved emissivities in bands 20,

22, and 23 are poor because the solar effects cannot be corrected well by the use of only the daytime observation

data. In Test F for cases with night dew, use of both daytime and nighttime data does not improve the accuracies,

even with the dew emissivity for nighttime. This is because the surface emissivity may be changed significantly

between daytime and nighttime. Test G is the results retrieved by the day/night Z2 fitting method with and

without the MMD-MIN relationships in cases without night dew. Use of the MMD-MIN relationships in Tests F

and G improves the accuracies by only a small amount. From the simulation results for Tests A through G, we

can gain the following insights into the capability of the day/night LST algorithm to deal with the dew effects: 1)

dew does not affect the LST and emissivity retrieval for most of the Earth surface which is covered by water and

vegetation. 2) dew do affect the retrieval for land surfaces with low emissivities in dry conditions, mainly in

semi-arid and arid areas. In these areas, dew reduces the accuracies in retrieved LST and emissivities in bands

20, 22, and 23 roughly by a factor of 2, and reduces the emissivity accuracies in other bands slightly.

Considering the low frequency of dew occurrence in semi-arid and arid regions, dew is not a serious problem for

LST and emissivity retrieval but it makes the processing complicated slightly. We assume that the dew effect is

needed to considered for one third of the global land (determined by the MODIS land-cover and NDVI products)

at a frequency less than 50%. Because the dew detection process with the night-only LST mode takes less than

half the computing time for the day/night LST mode, the total computing time will be increased by less than 10

percent. 3) the MMD-MIN Z2 fitting day/night LST algorithm can be used to deal with night-only and day-only

observations at lower accuracies. Surface emissivities in MODIS bands 20, 22, and 23 cannot be retrieved

accurately by the day-only option in all situations (with and without dew). It is also worth noting the differences

between the ASTER TES algorithm and the MODIS day/night LST algorithm: 1) the ASTER algorithm uses five

bands in the spectral region 8-12 ktm, the MODIS algorithm uses four bands in the spectral range 8-13.5 I-tin and

three bands in the spectral region 3.5-4.2 lam. Two of the seven MODIS bands, bands 23 and 33, are on the edges

of the atmospheric windows. They are used to adjust the boundary atmospheric temperature and the column

water vapor but not for retrieval of surface temperature and emissivities per se. 2) If the atmospheric temperature

and water vapor profiles recovered from the MODIS sounding channels are accurate enough (ST < 1 °K, the
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accuracyof cwv< 10%), the ASTER algorithm can retrieve surface temperature and emissivity quite accurately.

But this algorithm does not have the capability to reduce the uncertainties in the ASTER atmospheric correction

product (including transmission, path radiance, and downwelling irradiance) which uses the MODIS atmospheric

profiles product as input. The MODIS day/night LST algorithm uses the MODIS atmospheric profiles product

only as initial conditions and has some capability to reduce the uncertainties in the atmospheric profiles by the

use of self consistency in the seven MODIS bands. For water surfaces and evergreen canopies with stable and

known emissivities, the LST and surface emissivity retrieved by this MODIS day/night algorithm will be

compared with the values retrieved by the MODIS generalized split-window LST algorithm for additional

evaluation of the self consistency. 3) The ASTER algorithm can retrieve daytime and nighttime surface

temperatures and emissivities independently so that its performance will not be affected by the dew occurrence in

principle. The dew occurrence will affect the MODIS day/night LST algorithm for some land-cover surfaces.

Therefore, its night-only option will be used first for dew detection, and then compare the retrieved _20 to its

daytime value retrieved previously. If there is a significant difference, this nighttime observation data should be

avoided in the day/night algorithm. If this is the only nighttime observation available in one or two weeks, it can

be used for day/night retrieval at a lower accuracy and it will be flagged in the QA (quality assessment) bits. 4)

These two algorithm will produce LST and surface emissivities at different spatial resolutions. Comparison

between the products by these two independent algorithms can provide useful information for validation.

5.3 Cloud Cover

Cloud cover is a common problem for visible and infrared remote sensing. Although the day/night LST

algorithm can be used for all land surfaces, the main purpose of this algorithm is to retrieve the surface

temperature and emissivity in semi-arid and arid regions where the surface emissivity varies in a wide range. The

International Satellite Cloud Climatology Project (ISCCP) C2 data from 1984 to 1987 show that the world's

desert regions, which result from the sub-tropical anticyclones, are areas of total cloud amount minima, less than

30% or 50% depending on the season [Drake, 1993]. From analysis of weather satellite observations, Chahine

[1995] shows that the decreases in moisture and cloudiness are coupled with the increase in surface temperature

over 304 °K, suggesting a positive feedback from the atmosphere perpetuating the existing desert conditions over

dry and hot deserts. With EOS AM and PM platforms, the chance to have pairs of clear-sky day/night data will

be increased significantly, especially in the dry areas.



27

6. VALIDATION OF THE LST ALGORITHMS

We validated the physical principle of the day/night LST method with a ground-based sun-shadow method by

measuring samples of soil, sands, grass and a black aluminum plate on the roof platform of our building at UCSB

on January 19th and 26th, 1996. The solar beam is blocked for half of the samples. The TIR spectrometer views

the portions in sunshine and in shadow for two separate measurements and also views a diffuse reflecting gold

plate in the same spots for providing information of the solar and atmospheric downwelling radiation. After

calibrating the spectrometer with blackbody at three different temperatures, another two separate measurements

are made. For each sample, we obtained two pairs of data for the sunshine and shadow portions, and the diffuse

reflecting gold plate. A band average procedure with the spectral response functions in seven MODIS TIR bands

(i.e., 20, 22, 23, 29, 31-33) is used to achieve a high signal-to-noise ratio. Radiometric calibration is made with

three blackbody temperatures, spectral emissivity of the blackbody surface and the front mirror, and the

temperature of the front mirror. Then we use two methods to recover the surface temperature. In the

conventional method, we use the spectral emissivity curves of samples measured with the integrating sphere

system. In the sun-shadow method, we make non-linear _2 fit of the sun-shadow data set for recovering surface

temperatures in sunshine and in shadow, and the band-averaged emissivities. The LST values of samples of sand,

soil, grass and black plate in sunshine and in shadow recovered by these two methods are shown in Fig. 8. Note

that the mark squares represent the first method. The standard deviations are 0.4°K and 0.1 °K, the maximum

LST differences are 0.7 °K and 0.2 °K, for the LST difference in sunshine and in shadow, respectively.

We conducted a field campaign jointly with the JPL (Jet Propulsion Laboratory) ASTER team at a large flat silt

playa in Railroad Valley, Nevada, on August 3rd, 1995. MAS and TIMS (Thermal Imaging Multispectral

Spectrometer) data, and field measurement data of surface spectral emissivity and temperature with TIR

spectrometer and broadband radiometer were collected. Temporal and spatial analysis has been made. As shown

in Table IX, LST retrieved from MAS data with the generalized split-window LST algorithm at view angle (0v)

18.75 ° agrees with field measurement LST values within 1 °K. In this case, the LST accuracy is mainly limited

by the uncertainty in its spatial variation. The MAS was calibrated with the new method [King et al., 1996].

Three field campaigns have been conducted in 1996. The first one was conducted over a snow field at the test

site in Mammoth Lakes, California, on April 2nd, 1996. The second one was conducted jointly with other EOS

teams at the same silt playa site in Railroad Valley, Nevada, on June 4th, 1996. The third one was conducted in

the southern BOREAS test site on 14 August, 1996. MAS data and field measurement data were collected in
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earlyafternoonandeveningduringthefirsttwo fieldcampaigns.It wasaperfectclear-skydayduringthefield

campaignat theplayasiteon 4 June 1996. Surface temperatures were measured by three different methods: a

TIR spectrometer, an infrared thermometer, and a thermistor I mm beneath the surface. The surface temperature

is also recovered from MAS data by the use of the generalized split-window and day/night LST algorithms.

These results are shown in Fig. 9. Except the daytime temperature measured by the thermistor beneath the

surface (it may differ from the surface temperature because of the variation in surface energy balance caused by

the changing wind speed), the surface temperature values given by five methods are all within 1 °C. The band

emissivities retrieved by the day/night LST method are lower than the values measured from playa samples,

which were collected at the test sites, by 0.02 in bands 31-33, and 0.09 in bands 20, 22, and 23. Note the

significant fluctuations in the daytime surface temperature caused by the change in wind speed.

7. COMPUTER CODING OF THE LST ALGORITHMS

Version 1 of the MODIS LST software has been submitted to the MODIS Team.

In this version of the MODIS LST code, both the generalized split-window LST algorithm and the day/night LST

algorithm have been implemented. The generalized split-window LST algorithm is used to retrieve LST for

pixels with known band emissivities. The band emissivities are inferred from the land-cover type based on the

previous month's MODIS land-cover product. The IGBP-type l-km global vegetation database will be used at-

launch as an alternative to the MODIS land-cover data. The numerical form of the generalized split-window LST

algorithm is a linear equation of the band brightness temperatures of MODIS bands 31 and 32. A built-in look-up

table in steps of 0.1 °K will be used to convert the band radiance into band brightness temperature. This LST

algorithm will be very efficient in the processing. We also established a database of atmospheric look-up tables

for MODIS bands 20, 22, 23, 29, 31-33, for the day/night LST algorithm. The data-base obtained from accurate

atmospheric radiative transfer simulations and look-up tables and interpolation methods are used in these

algorithms for numerical efficiency. The bubble chart for the LST generation process is shown in Fig. 10. The

LST process is working on the granule basis. Each granule covers four or more tiles. The global sinusoidal grids

system is divided into a large number of tiles, each with a nominal size of 1100 km by 1100 km (10 ° by 10 ° on

the equator). An internal file of intermediate data, named MOD.AM1.Vl.lst_update.TILE, will be used in the

process MOD_PRI 1 for each tile. This file stores the most updated clear-sky data for brightness temperatures in

MODIS bands 20, 22, 23, 29, 31-33, atmospheric temperature and water vapor profiles at lower levels, date and
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observation time, view angle, and related QA flags for both daytime and nighttime, and solar zenith angle, NDVI,

condensed information of land-cover for daytime. The at-launch IGBP-type global vegetation database and

NDVI will be used to distinguish pixels (class A) covered by dense vegetation, water, snow and ice from others

(class B) in barren lands, including bare soils, semi-arid and arid regions. The generalized split-window LST

algorithm will be applied to class A pixels for generating the level-2 LST product at 1km resolution. As doing an

experiment, we used the global land-cover classification database (named VEG_CLSS) in the Global Data Sets

for Land-Atmosphere Models, ISLSCP Initiative 1: 1987-1988, Volumes 1-5, which is available in CD-ROM

from NASA Goddard DAAC Science Data Center. The spatial resolution of this database is 1 by 1 degree

latitude/longitude. We can delineate semi-arid and arid regions which generally agree well with the dry regions

defined by climatology [Trewartha and Horn, 1980].

The major steps in the LST process for each granule of 100 MODIS scan cube (1000 scan lines with 1354 ikm-

resolution samples each line) are described in the following.

1) input one tile of the previous quarter's land cover product and the intermediate file MOD.AMl.lst_update.TILE.

2) input N scan-lines of MODIS geolocation IA and 1B data and level-2 MODIS products (cloud mask, atmospheric

profles, snow, NDVI) used as input to the LST process.

3) search for clear-sky pixels by the use of the MODIS cloud mask product, skip cloudy pixels.

4)find the grids covered with each clear-sky pixel, and calculate their coverages.

5) determine pixels with known band emissivities by the use of the previous quarter's land-cover product, MODIS

snow cover, and NDVI products. These products can be used to identify dense vegetation (evergreen needleleaf

forest, evergreen broadleaf forest, deciduous needleleaf forest, deciduous broadleaf forest, grasslands, croplands, if

NDVI > 0.8), water, snow, ice. Their emissivities in bands 31 and 32 can be calculated from the coverages of these

land cover types and the emissivity knowledge base. Then LST can be retrieved with the generalized split-window

LST algorithm.

5')for other pixels, retrieve LST with the generalized split-window algorithm by the use of the emissivity values in

bands 31 and 32 that were retrieved by the day/night algorithm in previous days. This retrieved LST needs to be

compared with and may be refined by the values retrieved by the day/night algorithm later.

6) calculate and accumulate the values at each grid that will be used in the day/night LST algorithm.

7) back to (2) if the granule is not completed.

8)find new pairs of daytime and trighttime co-registered pixels

9) proceed the statistical regression approach for the day/night LST method to retrieve surface temperatures and

emissivities.
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10) proceed the _2 fit approach of the day/night LST method for pixels in which the MODIS atmospheric

temperature and water vapor profiles product has high quality.

11) L3 LST qualiO, assessment. The LST retrieved by the day/night algorithm will be compared with and may be

refined or replaced by the values retrieved by the generalized split-window algorithm, especially for land cover types

with high and stable emissivities in bands 31 and 32.

12) output L3 LSTfor the tile.

13) update and output the intermediate tile file.

14) L2 LST quality assessment.

15) output N scan-lines of L2 LST.

16) go to 1) if there is more tiles.

The value of N in 2) is determined by the memory requirement and the size of the main memory on the CPU. We

use 10 as its initial value. IfN equals to the total number of scan lines in the granule, step 7) will be skipped. If

the computer system has enough main memory, all tiles can be processed with only one-time input of the granule

files. But most likely it is not the case in the beginning of the at-launch processing.

8. OTHER ACTIVITIES

An International Land-Surface Temperature Workshop was held on September 17-19, 1996, at the University of

California Santa Barbara. Jeff Dozier, Dean of the UCSB School of Environmental Science & Management

welcomed the participants. Twenty five participants from USA, France, Australia and Japan attended the

workshop. Twenty presentations were followed by two discussion sessions. It was a successful and productive

workshop. The workshop was part of a continuing effort to maintain contact among members of the EOS

community that are concerned with the improvement of LST algorithms, the definition of procedures for

validation of LST, and the identification of the sources and the magnitude of measurement uncertainties. The

specific goals of the Workshop were to clarify the present state of the art in LST estimation from spaceborne

sensors and to identify future directions including issues requiring further research effort. A subsidiary goal was

to establish a closer relationship between LST algorithm designers and the LST user community.

The new version (October 1996) of MODIS LST ATBD (algorithm theoretical basis document) was reviewed by

five reviewers in November 1996 and by the EOS Review Panel on December 11, 1996. The scores given by the

reviewers (2 As, 1 A-, and 2 Bs) reflect the significant improvement of the ATBD and the progress of the MODIS

LST algorithms in the past two years.
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TABLE I. Specifications of the EOS MODIS bands.

band bandwidth IFOV primary

(nm) use

1 620-670 250m L

2 841-876 250m A, L

3 459-479 500m L

4 545-565 500m L

5 1230-1250 500m L

6 1628-1652 500m A, L

7 2105-2155 500m A, L

8 405-420 lkm O

9 438-448 lkm O

10 483-493 lkm O

11 526-536 lkm O

12 546-556 lkm O

13 662-672 lkm O

14 673-683 lkm O

15 743-753 lkm A

16 862-877 lkm A

17 890-920 lkm A

18 931-941 lkm A

19 915-965 lkm A

26 1360-1390 lkm cirrus

band bandwidth IFOV NEAT primary

(pm) (°K) use

20 3.660-3.840 I km 0.05 O, L

21 3.929-3.989 1km fire, volcano

22 3.929-3.989 1km 0.07 A, L

23 4.020-4.080 I km 0.07 A, L

24 4.433-4.498 1km 0.25 A

25 4.482-4.549 1km 0.25 A

27 6.535-6.895 1km 0.25 A

28 7.175-7.475 1km 0.25 A

29 8.400-8.700 1km 0.05 L

30 9.580-9.880 1km 0.25 ozone

31 10.780-11.280 lkm 0.05 A, L

32 11.770-12.270 lkm 0.05 A, L

33 13.185-13.485 lkm 0.25 A, L

34 13.485-13.785 1km 0.25 A

35 13.785-14.085 1km 0.25 A

36 14.085-14.385 1km 0.35 A

Note: A - atmospheric studies; L - land studies; O - ocean studies. Ref: MODIS Level 1B Algorithm Theoretical

Basis Document, 1995, NASA/GSFC, Greenbelt, MD.
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TABLE II. List of terrestrial material samples.

sample

no.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

sample

name

basalt.f

basalt.v

ijolite.f

ijolite.v

rhyolite.f

rhyolite.v

crustose.10

crustose.65

basalt.h7

dunite.hl

granite.hi

syenite.hi

g reywack.eh 1
limeston.ehl

limeston.eh2

limeston.eh3

sandton.ehl

sandton.eh2

sandton.eh4

shale.h3

shale.h5

shale.h6

siltston.ehl

siltston.eh2

gneiss.hla

gneiss.h3a

gneiss.h4

marble.h2

marble.h3

marble.h4

quartzit.ehl

quartzit.eh4

quartzit.eh6
schist.h3a

schist.h6a

schist.h7

slate.h1 a

slate.h2a

slate.h3

0127

type of
material

fresh rough surface

desert vanish coated rock

fresh rough surface

desert vanish coated rock

fresh rough surface
desert vanish coated rock

lichens coated rock

lichens coated rock

igneous rock

igneous rock

igneous rock

igneous rock

sedimentary rock

sedimentary rock

sedimentary rock

sedimentary rock

sedimentary rock

sedimentary rock

sedimentary rock

sedimentary rock

sedimentary rock

sedimentary rock

sedimentary rock

sedimentary rock

metamorphic rock

metamorphic rock

metamorphic rock

metamorphic rock

metamorphic rock

metamorphic rock

metamorphic rock

metamorphic rock

metamorphic rock

metamorphic rock

metamorphic rock

metamorphic rock

metamorphic rock

metamorphic rock

metamorphic rock

soil (Spodosols)

sample sample

no. name

41 0135

42 0145

43 0211

44 0219

45 0226

46 0475

47 1530

48 4717

49 foliose.1

50 indiangr.ass

51 redoak

52 white.ine

53 senbeech

type of
material

soil (Entisols)

soil (Ultisols)

soil (Molisols)

soil (Alfisols)

soil (Inceptisols)

soil (Vertisols)

soil (Aridisols)

soil (Oxisols)

veg., lichens

veg., green foliage

veg., green foliage

veg., green foliage

veg., senescent foliage

54 senpine
55 senredoa.khl

56 senryegr.ass
57 oakbark. 1

58 pinebark.1

59 ypoplarb.ark

60 conifer.ous

61 decidu.ous

62 wood

63 seawater

64 distwa.ter

65 distice1.00g
66 distices.moo

67 seaice.10.ogr

68 seaicesm.oot

69 qtzwater.23

70 qtzwater.64

71 qtzwater.7
72 foam

73 oi115465

74 oil34792

75 oil39076

76 oil42667

77 soilfl.oat

78 qtzfloat

79 oil35473

80 qtz.hem

veg., senescent foliage

veg., senescent foliage

veg., senescent foliage

veg., tree bark

veg., tree bark

veg., senescent foliage

veg. decomposing litter

veg. decomposing litter

veg. decomposing litter

water

water

ice

ice

ice

ice

suspended sediments

suspended sediments

suspended sediments

water coatings

water coatings

water coatings

water coatings

water coatings

water coatings

water coatings

water coatings

quartz
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TABLE III. The standard deviations of errors in surface temperature and emissivities retrieved with two

approaches of the day/night LST algorithm.

atmospheric 5 Ts_day 5 Ts_night 5_20 5_22 5_23 5E29 5£31 5£32 5£33

profile (°K) (°K)

with the statistical regression approach

average 0.91 0.73 0.021 0.025 0.027 0.013 0.012 0.014 0.012

A109 0.82 0.75 0.026 0.024 0.027 0.032 0.013 0.018 0.014

Al15 1.18 0.73 0.021 0.027 0.033 0.015 0.013 0.016 0.013

average-4K 0.94 0.64 0.019 0.022 0.024 0.013 0.013 0.014 0.013

with the _2 fit approach

average 0.51 0.36 0.015 0.014 0.016 0.008 0.009 0.009 0.012

A109 2.13 1.91 0.057 0.068 0.076 0.030 0.036 0.043 0.014

A115 0.97 0.58 0.028 0.024 0.032 0.023 0.017 0.020 0.013

average-4K 0.45 0.32 0.014 0.013 0.015 0.008 0.009 0.009 0.013

TABLE IV. The RMS errors in surface temperature and emissivities retrieved with the X2 fit approach of

the day/night LST algorithm in the sensitivity study on assumptions of surface optical

properties in conditions of Ta_day=298.2°K, Ta_night=290.2°K, cwv=2.6cm, oL=I.0,

NEAT = 0.05-0. 12°K, and systematic calibration error = 0.5%.

test

no.
test Dms_day 5 Ts-night 5£31 5E32

conditions (°K) (°K) (daytime)

C1

C2

C3

C4

C5

C6

C7

En(J) =Ed(j)

fr(20) = fr(22) = fr(23)

Lambertian surface

_n(J) =EdO') + 0.01

En (J)=Ed(J) + O.1 (1 - ed)

fr(22) =0.95 fr(23), fr(20) =0.90fr(23)

fr(20)= 1.10fr(23), fr(22)= 1.05fr(23)

non-Lambertian surface (80%)

non-Lambertian surface (120%)

0.51 0.36 0.009 0.009

0.75 0.55 0.013 0.013

0.51 0.41 0.009 0.009

0.71 0.58 0.012 0.01 1

0.68 0.60 0.01 1 0.01 1

0.61 0.43 0.01 1 0.010

0.58 0.41 0.010 0.010
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TABLE V. The dependences of standard deviations (STs) and maximum errors (ATs) in surface

emissivities and temperatures retrieved with the Z2 fit approach of the day/night LST

algorithm on NEAT and calibration errors.

test NEAT calibration _ Ts_day 8 Ts_night A Ts_day A Ts_night _ 31 _ 32

no. (°K) errors (%) (°K) (°K) (°K) (°K)

D1 0.05,0.07,0.07,0.05,0.05,0.05,0.12 0.00 0.41 0.31 3.3 2.6 0.007 0.007

D2 0.05,0.07,0.07,0.05,0.05,0.05,0.12 0.50 0.51 0.36 3.2 2.1 0.009 0.009

D3 0.10,0.14,0.14,0.10,0.10,0.10,0.25 0.50 0.69 0.49 3.7 2.2 0.011 0.012

D4 0.05,0.07,0.07,0.05,0.05,0.05,0.12 0.75 0.58 0.40 3.3 2.1 0.010 0.011

D5 0.05,0.07,0.07,0.05,0.05,0.05,0.12 1.00 0.66 0.45 4.4 2.5 0.012 0.012

TABLE VI. Comparison between HCMM and MODIS TIR channels.

specification HCMM MODIS

orbital altitude

resolution

swath width

spectral range

number of TIR channels

NEAT

quantization

positioning error

spatial coverage

launch date

life time

620km

0.6km at nadir

716km

10.5-12.5 #m

1

0.4°K

8 bits from analog data

= 3km

direct broadcast to ground stations

April 1978

17 months

705km

lkm at nadir

2330km

3.5-14.5 _tm

16

0.05 °K for surface channels

0.25 °K for sounding channels

12 bits

< 200m

gloabl

June 1998

5 years
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TABLE VII. The sensitivity of surface emissivities and temperature retrieved by the _2 fit day/night LST algorithm

to uncertainties in day/night registration. The proportion of vegetation within a mixed pixel in daytime

differs from that in nighttime because of mis-registration.

P (veg) rms errors

day night 5 Ts_ d 5 Ts_ n _)£20 D£31 6£32

(°K) (°K)
I

maximum errors

A Ts_ d A Ts._n z_£20 z&£,31 A£,32

(°K) (°K)

Ts-d( veg)

0.5 0.5 0.35

0.5 0.45 0.35

0.5 0.4 0.37

0.5 0.35 0.44

0.5 0.3 0.46

0.5 0.25 0.56

0.5 0.2 0.61

Ts-d( veg)

0.5 0.5 0.36

0.5 0.45 0.38

0.5 0.4 0.38

0.5 0.35 0.43

0.5 0.3 0.46

0.5 0.25 0.52

0.5 0.2 0.58

T s-d( veg)

0.5 0.5 0.39

0.5 0.45 0.40

0.5 0.4 0.45

0.5 0.35 0.50

0.5 0.3 0.57

0.5 0.25 0.65

0.5 0.2 0.73

- Ts_d(background) =-4 °K

0.24 0.011 0.007 0.008

0.25 0.012 0.008 0.009

0.29 0.014 0.008 0.010

0.36 0.016 0.010 0.012

0.41 0.018 0.011 0.014

0.51 0.022 0.013 0.017

0.57 0.023 0.015 0.018

- Ts_d(background) = O°K

0.26 0.012 0.007 0.009

0.27 0.013 0.008 0.010

0.30 0.014 0.009 0.011

0.36 0.016 0.010 0.013

0.44 0.019 0.012 0.015

0.51 0.021 0.013 0.017

0.59 0.023 0.015 0.019

- Ts_d(background) = 4 °K

0.25 0.011 0.007 0.009

0.26 0.012 0.008 0.010

0.32 0.014 0.009 0.012

0.38 0.016 0.011 0.014

0.45 0.019 0.012 0.016

0.54 0.021 0.014 0.018

0.62 0.024 0.015 0.020

3.1 1.5 0.090 0.041 0.040

1.8 1.2 0.059 0.029 0.035

1.8 2.2 0.092 0.035 0.041

2.6 3.4 0.130 0.060 0.060

2.9 3.5 0.145 0.074 0.078

4.2 4.5 O. 182 0.086 0.081

4.1 3.4 0.185 0.144 0.101

2.3 1.5 0.068 0.031 0.037

2.1 1.5 0.068 0.037 0.037

1.8 1.9 0.082 0.036 0.038

2.6 2.8 0.109 0.047 0.048

2.9 4.7 O.183 0.083 0.074

3.7 3.6 O. 171 0.068 0.077

4.4 4.3 0.150 0.185 0.091

3.2 1.5 0.088 0.037 0.037

2.4 1.4 0.069 0.033 0.037

2.6 2.3 0.096 0.039 0.046

2.9 3.3 0.128 0.059 0.059

4.0 4.5 O.178 0.083 0.068

4.7 4.3 0.163 0.072 0.062

5.3 3.9 O.182 0.063 0.068
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TABLE VIII. The standard deviation (5) and maximum (A) errors in surface temperature and emissivities retrieved

with the statistical and the MMD-MIN ,2-fitting LST algorithms in cases with and without night dew.

test
number of 5Ts-day 5ms-night 8£`20 5£.22 5£`23 _)£`29 _)£`31 5£`32 _£`33

MMD-MIN (z_Ts_day z_ms_night A£ 2̀0 z_£2̀2 z_£2̀3 A£`29 z_£3̀1 A£32 A£`33)
relations used (°K)

A

B

C

D

E

G

day/night statistical LST method for cases with

0 0.87 1.71 0.026 0.029 0.026

(3.63 6.56 0.140 0.132 0.097

night-only X2-fitting LST method for cases with unknown night

0 1.49 0.070 0.066 0.071

(5.37 0.221 0.204 0.214

1 0.84 0.039 0.038 0.042

(3.36 0.161 0.147 0.149
2 0.81 0.037 0.037 0.043

0

1

2

night dew (including daytime £`'s only)

0.023 0.012 0.013 0.014

0.113 0.045 0.052 0.040)

dew (retrieving dew £`'s)

0.037 0.033 0.033 0.007

0.123 0.109 0.116 0.037)
0.019 0.015 0.014 0.007

0.094 0.062 0.087 0.037)
0.017 0.013 0.011 0.007

0.037)_ (3.14 0.149 0.137 0.146 0.094 0.068 0.071

night-only X,z-fitting LST method for cases without night dew (retrieving nighttime £.'s)

0.46 0.020 0.019 0.021 0.011 0.009 0.009 0.012

(1.75 0.063 0.058 0.064 0.057 0.037 0.034 0.031 )
0.44 0.020 0.019 0.021 0.012 0.010 0.011 0.012

(1.77 0.058 0.059 0.063 0.084 0.039 0.035 0.031 )
0.42 0.020 0.019 0.021 0.011 0.009 0.008 0.012

(1.81 0.068 0.075 0.080 0.092 0.035 0.037 0.031 )

day-only x2-fitting LST method for cases with unknown night dew (retrieving daytime £`'s)

0 0.74 0.021 0.055 0.059 0.014 0.012 0.013 0.014

(2.74 0.110 0.304 0.306 0.055 0.047 0.045 0.040)
1 0.63 0.021 0.028 0.048 0.011 0.009 0.010 0.014

(3.19 0.111 0.215 0.296 0.046 0.041 0.053 0.040)
2 0.64 0.021 0.028 0.047 0.011 0.009 0.009 0.014

(2.69 0.117 0.210 0.277 0.041 0.040 0.043 0.040)

0

1

2

0

1

2

day-only x2-fitting LST method for cases without night dew (retrieving daytime £`'s)

0.74 0.015 0.066 0.057 0.014 0.012 0.012 0.012

(2.42 0.059 0.314 0.191 0.074 0.067 0.063 0.031)
0.57 0.017 0.035 0.039 0.009 0.007 0.008 0.012

(2.42 0.291 0.300 0.265 0.032 0.037 0.064 0.031 )
0.56 0.016 0.029 0.040 0.009 0.007 0.007 0.012

(2.42 0.148 0.287 0.295 0.044 0.032 0.052 0.031)

day/night X2-fitting LST method for cases with known night dew (retrieving

0.74 0.21 0.021 0.055 0.059 0.014 0.012

(2.74 2.09 0.110 0.304 0.306 0.055 0.047

0.63 0.20 0.021 0.028 0.049 0.011 0.009
(3.19 2.09 0.111 0.146 0.296 0.046 0.041

0.63 0.20 0.021 0.030 0.049 0.011 0.009

(2.69 2.09 0.117 0.255 0.277 0.041 0.040

day/night x2-fitting LST method for cases without night dew (retrieving averaged

0.40 0.30 0.014 0.013 0.014 0.008 0.007

(2.02 1.49 0.073 0.065 0.072 0.110 0.033

0.37 0.28 0.013 0.012 0.013 0.007 0.006

(1.75 1.44 0.054 0.051 0.057 0.075 0.029

0.33 0.26 0.011 0.011 0.012 0.006 0.005
(1.77 1.20 0.051 0.055 0.060 0.053 0.027

daytime £`'s)

0.013 0.014

0.045 0.040)
0.010 0.014

0.053 0.040)
0.009 0.014

0.043 0.040)

£`'s)

0.007 0.012

0.034 0.031)
0.007 0.012

0.033 0.031 )
0.006 0.012

0.031 0.031)
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TABLE IX. Summary of LST values over the test site (38' 31.46'N, 115' 42.74'W) in Railroad Valley, Nevada,

during 1:22 and 1:30 PDT on 8/3/95. The size of one MAS pixel is approximately 50m by 50m.

size of area mean (°C) stdv (°C) remarks

12 cm diameter 58.5

5 cm diameter 59.2

1 MAS pixel 59.1

3 by 3 MAS pixels 58.9

5 by 5 MAS pixels 58.8

7 by 7 MAS pixels 58.9

9 by 9 MAS pixels 59.0

11 by 11 MAS pixels 58.9

21 by 21 MAS pixels 58.9

0.48

0.67

0.76

0.81

0.82

1.21

by radiometer

by spectrometer at ev 20 o

at 0v 18.75 °


